Abstract

In this study, we apply a non-negative matrix factorization approach for the extraction and detection of concepts or topics from electronic mail messages. For the publicly released Enron electronic mail collection, we encode sparse term-by-message matrices and use a low rank non-negative matrix factorization algorithm to preserve natural data non-negativity and avoid subtractive basis vector and encoding interactions present in techniques such as principal component analysis. Results in topic detection and message clustering are discussed in the context of published Enron business practices and activities, and benchmarks addressing the computational complexity of our approach are provided. The resulting basis vectors and matrix projections of this approach can be used to identify and monitor underlying semantic features (topics) and message clusters in a general or high-level way without the need to read individual electronic mail messages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.