Abstract
Beta-sitosterol (β-SITO), a phytosterol present in many edible vegetables, has been reported to possess antineoplastic properties and cancer treatment potential. We have shown previously that it binds at a unique site (the ‘SITO-site’) compared to the colchicine binding site at the interface of α- and β-tubulin. In this study, we investigated the anticancer efficacy of β-SITO against invasive breast carcinoma using MCF-7 cells. Since ‘isotypes’ of β-tubulin show tissue-specific expression and many are associated with cancer drug resistance, using computer-assisted docking and atomistic molecular dynamic simulations, we also examined its binding interactions to all known isotypes of β-tubulin in αβ-tubulin dimer. β-SITO inhibited MCF-7 cell viability by up to 50%, compared to vehicle-treated control cells. Indicating its antimetastatic potential, the phytosterol strongly inhibited cell migration. Immunofluorescence imaging of β-SITO-treated MCF-7 cells exhibited disruption of the microtubules and chromosome organization. Far-UV circular dichroism spectra indicated loss of helical stability in tubulin when bound to β-SITO. Docking and MD simulation studies, combined with MM-PBSA and MM-GBSA calculations revealed that β-SITO preferentially binds with specific β-tubulin isotypes (βII and βIII) in the αβ-tubulin dimer. Both these β-tubulin isotypes have been implicated in drug resistance against tubulin-targeted chemotherapeutics. Our data show the tubulin-targeted anticancer potential of β-SITO, and its potential clinical utility against βII and βIII isotype-overexpressing neoplasms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.