Abstract

Impedance (Z), phase (φ) and capacitance (C) versus bias voltage (V) characteristics are studied to clarify carrier injection and recombination characteristics in organic light-emitting diodes (OLEDs). The Z–V transition starts at a characteristic voltage (Vc), which is strongly frequency dependent, i.e. Vc shifts to a high voltage with increasing measuring frequency. The electron–hole recombination starts at a voltage above Vc revealed by the φ–V and C–V transitions, which correspond to a phase approaching 0, a sharp rise in current density and a decrease in capacitance. Hole injection starts at a low Vc and corresponds to charge carrier accumulation and a slight rise in capacitance. Cole–Cole impedance plots illustrate that the interfacial resistance corresponds to the impedance at ultrahigh frequencies and shows bias independence, while the impedance at low frequencies represents the sum of interfacial resistance and organic stacks, and exhibits considerable bias dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.