Abstract

Solid oxide electrolysis cells (SOECs) are promising for the selective electrochemical conversion of CO2, or mixed streams of CO2 and H2O, into high energy products such as CO and H2. However, these systems are limited by the poor redox stability of the state-of-the-art Ni-based cathode electrocatalysts. Due to their favorable redox properties, mixed ionic-electronic conducting (MIEC) oxides have been considered as promising alternatives. However, improvement of the electrochemical performance of MIEC-based SOEC electrocatalysts is needed and requires an understanding of the factors that govern their activity. Herein, we investigate the effect of B-site 3d metal cations (Cr, Fe, Co, Ni) of LaBO3 perovskites on their CO2 electrochemical reduction activity in SOECs. We find that their electrochemical performance is highly dependent on the nature of the B-site cation and trends as LaFeO3 > LaCoO3 > LaNiO3 > LaCrO3. Among these perovskites, LaNiO3 is the least stable and decomposes under electrochemical conditions. In situ characterization and ab initio theoretical calculations suggest that both the nature of the B-site cation and the presence of oxygen surface vacancies impact the energetics of CO2 adsorption and reduction. These studies provide fundamental insights critical toward devising ways to improve the performance of MIEC-based SOEC cathodes for CO2 electroreduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.