Abstract

Rate constants and product ions were determined for a series of anions reacting with singlet molecular oxygen O2 (a 1Δg) at thermal energy using an electrospray ionization-selected ion flow tube. The 20 naturally occurring amino acids were used to produce corresponding deprotonated anions; only [Cys-H]- and [Pro-H]- were found to be reactive with O2 (a 1Δg), generating OSCH2CH(NH2)CO2- + HO and C5H6NO2- + H2O2, respectively. The reaction of O2 (a 1Δg) with [Cys-H]- has a rate constant more than ten times larger than the reaction of O2 (a 1Δg) with [Pro-H]-. Furthermore, reactions of O2 (a 1Δg) with carboxylic acid and thiol anions were carried out to elucidate the reactivity of the sulfur-containing functional groups. Potential energy surfaces and overall reaction exothermicities were calculated for representative reactions using density functional theory. Reactions in which attack occurs at the sulfur produce HCSO- as an ionic product. Reactions of several carboxylic acid anions likely proceed through a hydroperoxide intermediate that is analogous to that calculated for reactions with amino acid anions at a higher collision energy. Overall, rate constants for reactions of carboxylic acid anions RC(O)O- were found to be smaller for larger R groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.