Abstract

Radiation therapy is a clinically proven, localized preventive measure for heterotopic ossification (HO). Despite its efficacy, there is a lack of standardization of radiation prescription dosing and fractionation, and the mechanism of the impact of radiation in HO prevention remains unknown. Here, using an established mouse model of traumatic HO induced by burn and tenotomy, we demonstrate that 7Gy in one fraction delivered to the injury site within 72 hours postoperatively significantly decreases HO formation and improves hindlimb range of motion. In-depth single-cell transcriptomic analyses, in combination with immunofluorescent staining, demonstrate decreased cellular numbers as well as aberrant endochondral differentiation and downregulation of associated upstream signaling pathways in irradiated mesenchymal progenitor cells. Our study provides the framework for future mechanistic and clinically relevant studies exploring radiation efficacy in preventing HO formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.