Abstract

A promising approach to improve the specific capacity and cyclability in a Na–O2 cell using a pyrrolidinium-based ionic liquid electrolyte in a half-cell has been explored in this work. Increasing the concentration of sodium salt in an ionic liquid electrolyte produces a significant enhancement in the discharge capacity of up to 10 times, a reduction in the overpotential and an increase in the long-term cyclability. Additionally, a distinct discharge morphology is also observed, which is demonstrated to be result of a different oxygen reduction reaction mechanisms. These improvements are likely due to the solvation of Na+ in the electrolyte mixtures containing different Na+ concentrations; the coordination of Na+ by the anion of the ionic liquid dictates the discharge product morphology. At low concentrations, Na+ is strongly coordinated to the anion of the ionic liquid, and this also can have an effect on its mobility; however, at high Na+ concentration, this interaction is weakened and favors mass trans...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.