Abstract

Bone diseases such as osteoporosis and osteoarthritis are regarded as age-associated diseases, and occur in a significantly increasing number of patients, but the underlying mechanisms of these age-associated bone diseases are not yet clear. We have established a transgenic mouse line by an insertion mutation. These mice exhibit many features related to precocious aging. Homozygote mutant mice, which lack expression of the newly identified targeted gene,klotho (kl), exhibit atherosclerosis, emphysema, hypogonadism and calcification of soft tissues, and die within 3-4 months. We describe here the radiological and histological characteristics of the skeletal abnormalities in the bones of the mice with a mutation in the kl gene locus. In heterozygous mice (+/kl), the skeletal patterns and structures remain normal and most features are similar to those in the wild-type, whereas histological examinations of homozygous mice (kl/kl) show abnormal elongation of the trabecular bone(s) in the epiphyses of long bones. As with their long bones, on radiographic examination the mid parts of the vertebral bones of these mice show less radiopacity compared with the wild-type, again resembling human vertebrae of osteoporotic patients. The elongation of the trabecular bones results in high radiopacity on both ends of each of the vertebrae, and in the epiphyses of the long bones. Cancellous bone volume in the epiphyses of the homozygote mice is three times that of the wild-type mice. The kl/kl mice are smaller than the wild-type litter mates and hence the size of their long bones is less than that of the wild-type litter mates. These observations, and the osteopenia in the vertebrae and long bones in these mice, suggest the presence of abnormality in bone metabolism, the elongation of the trabecular bone apparently resulting from the relatively low levels of bone resorption. Therefore, thekl/kl mutant mice could serve as an interesting tool to study the effects of the lack of the product of the new gene,klotho, on bone metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.