Abstract

We provide conditions for the existence of hyperbolic, unbounded periodic and elliptic solutions in terms of Weierstrass ℘ functions of both third and fifth-order KdV–BBM (Korteweg-de Vries–Benjamin-Bona-Mahony) regularized long wave equation. An analysis for the initial value problem is developed together with a local and global well-posedness theory for the third-order KdV–BBM equation. Traveling wave reduction is used together with zero boundary conditions to yield solitons and periodic unbounded solutions, while for nonzero boundary conditions we find solutions in terms of Weierstrass elliptic ℘ functions. For the fifth-order KdV–BBM equation we show that the parameter γ=112, which leads to a Hamiltonian, represents a restriction in where there are constraint curves that never intersect a region of unbounded solitary waves. This in turn shows that only dark or bright solitons and no unbounded solutions exist. Motivated by the lack of a Hamiltonian structure for γ≠112 we develop Hk bounds, and we show for the non-Hamiltonian system that dark and bright solitons coexist together with unbounded periodic solutions. For nonzero boundary conditions, due to the complexity of the nonlinear algebraic system of coefficients of the elliptic equation we construct Weierstrass solutions for a particular set of parameters only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.