Abstract
Motivated by the work of Zargar and Zamani, we introduce a family of elliptic curves containing several one- (respectively two-) parameter subfamilies of high rank over the function field $\mathbb{Q}(t)$ (respectively $\mathbb{Q}(t,k)$). Following the approach of Moody, we construct two subfamilies of infinitely many elliptic curves of rank at least 5 over $\mathbb{Q}(t,k)$. Secondly, we deduce two other subfamilies of this family, induced by the edges of a rational cuboid containing five independent $\mathbb{Q}(t)$-rational points. Finally, we give a new subfamily induced by Diophantine triples with rank at least 5 over $\mathbb{Q}(t)$. By specialization, we obtain some specific examples of elliptic curves over $\mathbb{Q}$ with a high rank (8, 9, 10 and 11).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.