Abstract

Elliptic curve cryptosystems in the presence of faults were studied by Biehl et al., Advances in Cryptology CRYPTO 2000, Springer Verlag (2000) pp. 131--146. The first fault model they consider requires that the input point P in the computation of dP is chosen by the adversary. Their second and third fault models only require the knowledge of P. But these two latter models are less `practical' in the sense that they assume that only a few bits of error are inserted (typically exactly one bit is supposed to be disturbed) either into P just prior to the point multiplication or during the course of the computation in a chosen location. This paper relaxes these assumptions and shows how random (and thus unknown) errors in either coordinates of point P, in the elliptic curve parameters or in the field representation enable the (partial) recovery of multiplier d. Then, from multiple point multiplications, we explain how this can be turned into a total key recovery. Simple precautions to prevent the leakage of secrets are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.