Abstract

Zero-Quantum artifacts seriously degrade the performance of 2D NOESY. Homonuclear J-evolution during t(1) period generates Zero-Quantum and other higher quantum coherences which represent the magnetization loss and the artifacts created. We demonstrate that creation of such artifacts itself can be prevented for shorter t1 period by a perfect echo based decoupling technique during t1 period in a single scan. This is in contrast to existing methods that create unwanted coherence, and subsequently suppress that to produce a clean spectrum with a sensitivity penalty. Although decoupling performance of the present scheme remains robust for echo time 2τ short compared to 1/2J, we show that even a partial decoupling effect for extended t(1) (=2τ) period up to 100 ms along with a Zero-Quantum filter generates NOE spectrum from Cyclosporine A, in which majority of the cross peaks displayed partial sensitivity enhancement with few exceptions. However, in crowded proton spin systems like menthol, the enhancements were not observed and perfect echo NOESY displays similar performance as Zero-Quantum filtered NOESY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.