Abstract
Many problems in computer graphics and computer vision applications involves inferring a rotation from a variety of different forms of inputs. With the increasing use of deep learning, neural networks have been employed to solve such problems. However, the traditional representations for 3D rotations, the quaternions and Euler angles, are found to be problematic for neural networks in practice, producing seemingly unavoidable large estimation errors. Previous researches has identified the discontinuity of the mapping from SO(3) to the quaternions or Euler angles as the source of such errors, and to solve it, embeddings of SO(3) have been proposed as the output representation of rotation estimation networks instead. In this paper, we argue that the argument against quaternions and Euler angles from local discontinuities of the mappings from SO(3) is flawed, and instead provide a different argument from the global topological properties of SO(3) that also establishes the lower bound of maximum error when using quaternions and Euler angles for rotation estimation networks. Extending from this view, we discover that rotation symmetries in the input object causes additional topological problems that even using embeddings of SO(3) as the output representation would not correctly handle. We propose the self-selecting ensemble, a topologically motivated approach, where the network makes multiple predictions and assigns weights to them. We show theoretically and with experiments that our methods can be combined with a wide range of different rotation representations and can handle all kinds of finite symmetries in 3D rotation estimation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.