Abstract

Synthetic zinc finger transcription factors (ZFP-TFs) were designed to upregulate the expression of the endogenous Arabidopsis γ-tocopherol methyltransferase (GMT) gene. This gene encodes the enzyme responsible for the conversion of γ-tocopherol to α-tocopherol, the tocopherol species with the highest vitamin E activity. Five three-finger zinc finger protein (ZFP) DNA binding domains were constructed and proven to bind tightly to 9 bp DNA sequences located in either the promoter or coding region of the GMT gene. When these ZFPs were fused to a nuclear localization signal and the maize C1 activation domain, four of the five resulting ZFP-TFs were able to upregulate the expression of the GMT gene in leaf protoplast transient assays. Seed-specific expression of these ZFP-TFs in transgenic Arabidopsis produced several lines with a heritable elevation in seed α-tocopherol. These results demonstrate that engineered ZFP-TFs comprised of plant-derived elements are capable of modulating the expression of endogenous genes in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.