Abstract

Although epidemiological and preclinical studies have shown the preventative effect of n-3 polyunsaturated fatty acids (PUFAs) on colorectal cancer (CRC), the underlying molecular mechanisms are not clear. In this study, we revealed that elevation of n−3/n-6 PUFAs ratio suppress the mechanistic target of rapamycin complex 1 (mTORC1) and prevent colorectal tumorigenesis. The transgenic expression of fat-1, a desaturase that catalyzes the conversion of n-6 to n-3 PUFAs and produces n-3 PUFAs endogenously, repressed colorectal tumor cell growth and remarkably reduced tumor burden, and alleviated anemia as well as hyperlipidemia in APCMin/+ (adenomatous polyposis coli) mice, a classic CRC model that best simulates most clinical cases. In contrast to arachidonic acid (AA, C20:4 n−6), either Docosahexaenoic acid (DHA, C22:6 n−3), eicosapentaenoic acid (EPA, C20:5 n−3), or a combination of DHA and AA, efficiently inhibited the proliferation of CRC cell lines and promoted apoptosis in these cells. The ectopic expression of fat-1 had similar effects in colon epithelial cells with APC depletion. Mechanistically, elevation of n−3/n−6 ratio suppressed mTORC1 activity in tumors of APCMin/+ mice, CRC cell lines with APC mutation, and in normal colon epithelial cells with APC depletion. In addition, elevation of n−3/n−6 ratio repressed mTORC1 activity and inhibited adipogenic differentiation in preadipocytes with APC knockdown, as well as alleviated hyperlipidemia in APCMin/+ mice. Taken together, our findings have provided novel insights into the potential mechanism by which increase in n−3/n−6 PUFAs ratio represses CRC development, and also a new rationale for utilizing n-3 PUFAs in CRC prevention and treatment.

Highlights

  • Colorectal cancer (CRC) ranks the second most prevalent cancer among women and the third among men worldwide [1]

  • To investigate the potential protective role of increasing n-3/n-6 ratio against colorectal cancer (CRC) associated with adenomatous polyposis coli (APC) mutation www.impactjournals.com/oncotarget www.impactjournals.com/oncotarget in vitro, we examined the effect of Docosahexaenoic acid (DHA, C22:6 n−3), eicosapentaenoic acid (EPA, C20:5 n-3), arachidonic acid (AA, C20:4 n−6), or a combination of both DHA or AA, on the proliferation of SW480, a CRC cell line with truncated APC and with constitutively active β-catenin-TCF-regulated transcription (CRT, the best established hallmark of activated Wnt signaling), and on the proliferation of HCT116 cells, a CRC cell line with a β-catenin mutation that leads to constitutively active CRT [29]

  • Due to inconsistent results brought by the varieties of polyunsaturated fatty acids (PUFAs), we crossed fat-1 mice, which convert n−6 PUFAs to n−3 PUFAs endogenously, with APCMin/+ mice, generating a novel fat-1-APCMin/+ double transgenic mice model to study the effects of endogenous n−3 PUFAs on colorectal carcinogenesis associated with APC mutation

Read more

Summary

INTRODUCTION

Colorectal cancer (CRC) ranks the second most prevalent cancer among women and the third among men worldwide [1]. Source, and ratio of PUFAs vary widely and lead to inconsistent results, a transgenic mouse model that expresses fat-1, an n−3 fatty acid desaturase, was developed [22]. Since this enzyme can catalyze the conversion of n-6 PUFAs to n−3 PUFAs by introducing a double bond into fatty acyl chains, the fat-1 transgenic mice will enable the investigation of the biological properties of n-3 PUFAs without having to incorporate n−3 PUFAs in the diet, and this strategy represents a more reliable and intuitive model [23]. For the first time we crossed fat-1 transgenic mice with APCMin/+ mice and generated a novel mouse strain, fat-1-APCMin/+ double-hybrid, to investigate the preventive effects of elevation of n–3/n–6 ratio on CRC associated with APC mutation and the underlying mechanisms. Our results provide a new rationale and exciting therapeutic value of utilizing n–3 PUFAs to target CRC and associated anemia, in cases involving APC mutation

RESULTS
DISCUSSION
Findings
MATERIALS AND METHODS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.