Abstract

The endogenous opioid system and the hypothalamic-pituitary-adrenal (HPA) axis have been implicated in many of the neurobiological effects of cocaine. Previous studies in our laboratory showed that “binge” pattern cocaine administration increases preprodynorphin (ppDyn) mRNA levels in the caudate putamen and circulating levels of corticosterone in the rat. The present study extended these findings to guinea pigs, a species known to have a κ opioid receptor profile similar to that of humans. Male guinea pigs were treated with: (a) “binge” pattern cocaine for 7 days (subchronic) (3 × 15 mg/kg/day, hourly, intraperitoneal); (b) “binge” pattern saline for 5 days followed by “binge” pattern cocaine for 2 days (subacute); or (c) “binge” pattern saline for 7 days. Thirty minutes after the final injection, levels of ppDyn mRNA were quantitated in the nucleus accumbens, caudate putamen, frontal cortex, amygdala, hippocampus, and hypothalamus using a solution hybridization RNase protection assay. Regional distribution of ppDyn mRNA levels in the guinea pig brain was similar to that found in rat, with highest levels in the nucleus accumbens and caudate putamen. In the caudate putamen, ppDyn mRNA was significantly increased following either 2 days (38% increase) or 7 days (32% increase) of “binge” pattern cocaine administration as compared to saline-treated controls. No significant changes in ppDyn mRNA levels were found in any other brain region. Both subacute and subchronic “binge” cocaine administration significantly elevated plasma levels of adrenocorticotropin hormone (ACTH) and cortisol. However, the ACTH and cortisol increases were significantly blunted following 7 days of “binge” cocaine administration as compared to 2 days of drug treatment, reflecting the development of HPA tolerance or adaptation to repeated cocaine administration. Thus, the ppDyn mRNA and HPA responses to cocaine in guinea pigs are similar to those observed in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.