Abstract
Diabetes is a very strong predictor of chronic systemic vascular diseases and acute cardiovascular events. Recently, associations between metabolic disorders and pulmonary hypertension have also been reported in both humans and animal models. In order to get some further insight into the relationship of pulmonary hypertension with obesity, insulin resistance and hyperglycemia, herein we have used the Zucker diabetic fatty rats (ZDF/clr-lepr fa) at 20 weeks fed a standard diet and compared to their lean Zucker littermates (ZL). ZDF rats were obese, had elevated plasma glucose levels and insulin resistance, i.e. a clinically relevant model of type 2 diabetes. They presented elevated systolic, diastolic and mean pulmonary arterial pressures and a parallel increase in the Fulton index. Systemic arterial pressures were also increased but the left ventricle plus septum weight was similar in both groups and the heart rate was reduced. Wall media thickening was observed in the small pulmonary arteries from the ZDF rats. Isolated pulmonary arteries mounted in a wire myograph showed similar vasoconstrictor responses to phenylephrine and 5-HT and similar responses to the endothelium-dependent vasodilator acetylcholine. However, the iNOS inhibitor 1400W enhanced the vasoconstrictor responses in ZDF but not in ZL rats. The protein expression of eNOS and iNOS was not significantly different in the lungs of the two groups. The lung expression of Bmpr2 mRNA was downregulated. However, the mRNA expression of Kcna5, Kcnk3, Kcnq1, Kcnq4 or Kcnq5, which encode for the potassium channels Kv1.5, TASK-1, Kv7.1, Kv7.4 and Kv7.5, respectively, was similar in ZL and ZDF rats. In conclusion, ZDF rats show increased pulmonary arterial pressure, right ventricular hypertrophy, pulmonary arterial medial thickening and downregulated lung Bmpr2 despite leptin resistance. These changes were mild but are consistent with the view that diabetes is a risk factor for pulmonary hypertension.
Highlights
Pulmonary hypertension (PH) is characterized by an increase in pulmonary arterial pressure (PAP) and pulmonary vascular resistance determined by right heart catheterization at rest [1]
It is classified into 5 groups according to its origin: 1) pulmonary arterial hypertension (PAH), 2) PH hypertension associated with left heart disease, 3) PH associated with lung diseases and hypoxia, 4) PH associated to chronic thromboembolism (CTEPH), and 5) PH of unknown origin or multifactorial [1]
Absolute right ventricle (RV) but not left ventricle plus the septum (LV+S) weight was significantly increased in ZDF rats (Fig 2A)
Summary
Pulmonary hypertension (PH) is characterized by an increase in pulmonary arterial pressure (PAP) and pulmonary vascular resistance determined by right heart catheterization at rest [1]. It is classified into 5 groups according to its origin: 1) pulmonary arterial hypertension (PAH), 2) PH hypertension associated with left heart disease, 3) PH associated with lung diseases and hypoxia, 4) PH associated to chronic thromboembolism (CTEPH), and 5) PH of unknown origin or multifactorial [1]. With the exception of idiopathic PAH, in all groups and subgroups of PH there is a known factor, such as a mutation, infection, hypoxia, drugs, embolism or other diseases, that is associated with the development of the disease. Obesity has been suggested as a protective prognostic factor in patients with PH [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.