Abstract

Metabolic syndrome (MS) is a high-risk condition for type 2 diabetes, a disease characterized by insulin resistance and insulin secretion abnormalities. Insulin resistance has been widely characterized in MS subjects while insulin secretion has been poorly investigated. The present study was hence undertaken to further investigate the α and β cell function and entero-insular axis in this pre-diabetic condition. Using 120' oral glucose tolerance test (OGTT, 75 g) and 60' intravenous glucose tolerance test (IVGTT, 0.3 g/kg), we studied α and β cell function, insulin resistance, and incretin levels in 96 subjects with normal fasting glucose and normal glucose tolerance to OGTT, with (MS+, n=29) and without MS (MS-, n=67). MS+ individuals showed in comparison with MS-: higher insulinogenic index (IG30) and higher area under the curve (AUC) (0-120) for glucose and insulin during the OGTT, P<0.05; higher AUC (0-10) for glucose (P<0.05) but similar first phase insulin secretion (P=NS) as measured by ΔAIRG and AUC (0-10) for insulin during the IVGTT; increased AUC (0-60) for insulin during the IVGTT (P=0.04); higher GIP levels at 30' (P=0.03), 60' (P=0.01), 90' (P=0.003), and 120' (P=0.004); higher AUC (0-120) for GIP (P=0.007); similar AUC (0-120) for GLP-1 during the OGTT; and delayed glucagon suppression after the OGTT. NGT subjects with MS showed increased GIP secretion that could be responsible for the delayed glucagon suppression during the OGTT, thereby suggesting a role for incretins in regulating glucose homeostasis in this condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.