Abstract

We report the elemental composition, including Rh, Pd, and Pt, of total (i.e., tailpipe and nontailpipe) PM2.5 and PM10 emissions from predominantly gasoline-driven light-duty vehicles (LDVs) traversing the Washburn Tunnel in Houston, Texas during November and December, 2012. Using a novel sample preparation and dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry technique, we quantify the emission of numerous representative, transition, and lanthanoid elements. Two sets of time integrated PM samples were collected over 3-4week duration both inside the tunnel as well as from the tunnel ventilation air supply to derive accurate LDV source profiles incorporating three platinum group elements (PGEs) for the first time. Average Rh, Pd, and Pt concentrations from the tunnel ventilation air supply were 1.5, 11.1, and 4.5pgm(-3) in PM2.5 and 3.8, 23.1, and 15.1pgm(-3) in PM10, respectively. Rh, Pd, and Pt levels were elevated inside the Washburn Tunnel reaching 12.5, 91.1, and 30.1pgm(-3) in PM2.5 and 36.3, 214, and 61.1pgm(-3) in PM10, respectively. Significantly higher enrichment factors of Cu, Zr, Rh, Pd, Sb, and Pt (referenced to Ti in the upper continental crust) inside the tunnel compared with the ventilation air supply suggested that they are unique elemental tracers of PM derived from gasoline-driven LDVs. This highlights the importance of advancing methods to quantify the trace level PGE emissions as a technique to more accurately estimate LDVs' contributions to airborne PM. Using the emission profile based on PGEs and ambient quantification, mass balancing revealed that approximately half the fine PM mass in the tunnel could be attributed to tailpipe emissions, approximately one-quarter to road dust, with smaller contributions from brake (7%) and tire (3%) wear. On the other hand, PM10 mostly originated from resuspended road dust (∼50%), with progressively lower contributions from tailpipe emissions (14%), brake wear (9%), and tire wear (2%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.