Abstract
The role of organic and inorganic elemental profiles in the growth, development, and secondary metabolite synthesis of plants is crucial, particularly concerning their medicinal value. However, comprehensive studies addressing both aspects are scarce. Hence, the present manuscript aims to investigate the potential use of Fourier transform infrared spectroscopy (FT-IR) and laser-induced breakdown spectroscopy (LIBS) techniques to obtain the functional groups and organic and inorganic elemental profiles of significant medicinal plants belonging to the Zingiberaceae family collected from two different geographic regions in India. The FT-IR analysis of the methanolic extracts shows the presence of aliphatic and aromatic alcohols, esters, ethers, carboxyl compounds, and their derivatives. In LIBS analysis, the spectral characteristics of atomic and molecular species present in the samples were observed, encompassing both organic and inorganic elements. The presence of heavy metals and trace elements have also been observed in the LIBS spectra of the samples. Furthermore, partial least squares discriminant analysis (PLS-DA) has been used to obtain classification pattern of the samples based on their spectral fingerprints. This study not only helps in reflecting the significance of micronutrients in aiding secondary metabolism thus enhancing the medicinal properties of plants, but also enables the identification of trace elements within plants. This facilitates the determination of the suitable usage and dosage of particular plant components, contributing to the research goal of establishing pharmacological and nutraceutical significance. This study is imperative as it fills a critical gap in research, although further work in this direction is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.