Abstract

We investigate an extension of the Standard Model (SM) with two candidates for dark matter (DM). One of them is a real scalar field and the other is an Abelian gauge field. Except for these two, there is another beyond SM field which has unit charge under a dark UD(1) gauge symmetry. The model is classically scale invariant and the electroweak symmetry breaks because of the loop effects. Although SM is extended with a new dark symmetry and three fields, because of scale invariance, the parameter space is strictly restricted compared to other two-component DM models. We study both DM phenomenology and electroweak phase transition and show that there are some points in the parameter space of the model consistent with DM relic density and direct detection constraints, while at the same time can lead to first order electroweak phase transition. The gravitational waves produced during the phase transition could be probed by future space-based interferometers such as Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.