Abstract

1. The neuronal membrane responses to long constant current pulses (essentially current steps) have been studied in cat triceps surae motoneurones identified as to the type of muscle fibres, fast twitch (type F) or slow twitch (type S), innervated by the cell being studied. For each motoneurone the membrane time constant, tau(M), and input resistance, R(N), were determined from the response to a current step. In addition, shorter time constants (;equalizing time constants') resulting from current spread into the dendrites were estimated by graphical analysis.2. The electrotonic length of the combined motoneurone soma and dendritic tree was estimated from the current step data using the neuronal equivalent cylinder model formulated by Rall (Rall, 1969). The mean electrotonic length of the motoneurone equivalent cylinder was approximately 1.5 in both type F and type S motoneurones. The mean membrane time constant of type F cells was 5.6 msec and that of type S motoneurones was 6.7 msec. This difference in mean tau(M) values was of border line statistical significance.3. The results indicate that the electrotonic length of the combined dendritic trees of both large type F and small type S motoneurones is essentially the same. The implication of this conclusion for interpretation of previous analyses of the monosynaptic EPSP is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.