Abstract

We report on an approach allowing simple yet efficient tuning of the bistability properties in large displacement micro actuators. The devices fabricated from silicon on insulator (SOI) wafers using a deep reactive ion etching (DRIE)-based process incorporate elastic suspension realized as a pair of beams initially curved in-plane and are operated electrostatically by a comb-drive transducer. The curvature of beam and therefore the stability characteristics of the suspension are controlled by passing a current through the suspension and resistive heating the beam material. Experimental results, which are in good agreement with the finite elements model predictions, demonstrate the feasibility of the suggested approach and show that the application of a small tuning current increases the device deflection from 42 to 56 µm, allows adjustment of the critical snap-through and snap-back voltages and makes it possible the control of latching without an additional electrode. The approach can be efficiently implemented in electrical and optical switches and threshold inertial and mass sensors where the use of long displacement actuators with an adjustable bistability range is beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.