Abstract

A new approach to selectively enhance the ultraviolet (UV) detection sensitivity of titania (TiO2), albeit in the presence of silica (SiO2), alumina (Al2O3), and zinc oxide (ZnO), nanoparticles in capillary electrophoresis (CE) analysis was developed. Interactions of Triton X-100 (TX-100), polyethylene glycol (PEG),and deoxyribonucleic acid (DNA) with TiO2 nanoparticles produced larger CE-UV peaks at various enhancement factors. Single-stranded DNA (ssDNA) was a more effective adsorbate than double-stranded DNA (dsDNA) due to its flexible molecular structure that participated in a stronger interaction with TiO2 nanoparticles via its sugar-phosphate backbone. Disaggregation of TiO2 nanoparticles upon DNA binding due to electrosteric stabilization was validated using dynamic light scattering. PEG coating of TiO2-DNA nanoparticles further enhanced the UV detection sensitivity in CE analysis by providing extra electrosteric stabilization. This analytical technique, which involves binding of TiO2 nanoparticles with DNA followed by coating with PEG, has allowed us to achieve progressively an enhancement factor up to 13.0 ± 3.0 - fold in analytical sensitivity for the accurate determination of disaggregated TiO2 nanoparticles. Graphical Abstract Selective enhancement of UV detection sensitivity for TiO2 nanoparticles via electrosteric stabilization using ssDNA and PEG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.