Abstract

High-resolution 31P magic angle spinning (MAS) NMR spectroscopy is presented as a direct and non-perturbing method for measuring changes in surface charge density occurring in mixed phospholipid membranes upon binding of charged surface-active peptides. 31P MAS NMR was used to investigate mixed lipid membranes of neutral phosphatidylcholine and negatively charged phosphatidylglycerol where the molar fraction of the charged lipid was varied from 0 to 1. The chemical shifts of the individual membrane lipids showed a simple variation in response to changes in the fraction of the negatively charged component phosphatidylglycerol. Addition of the positively charged amyloid-β1-40 peptide, a key substance in Alzheimer's disease, resulted in changes in the isotropic chemical shifts of the membrane lipid phosphates in a way consistent with reduction in the negative surface charge of the mixed lipid bilayers. Binding of different amounts of the positively charged peptide pentalysine to L-α-dioleoylphosphatidylcholine/L-α-dioleoylphosphatidylglycerol (DOPC/DOPG) vesicles (2:1 molar ratio) also showed a systematic variation of both chemical shift values. These changes were described by a simple two-site model and indicate purely electrostatic binding of pentalysine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.