Abstract

It has long been thought that chaperones are primarily attracted to their clients through the hydrophobic effect. However, in in vitro studies on the interaction between the chaperone Spy and its substrate Im7, we recently showed that long-range electrostatic interactions also play a key role. Spy functions in the periplasm of Gram-negative bacteria, which is surrounded by a permeable outer membrane. The ionic conditions in the periplasm therefore closely mimic those in the media, which allowed us to vary the ionic strength of the in vivo folding environment. Using folding biosensors that link protein folding to antibiotic resistance, we were able to monitor Spy chaperone activity in Escherichia coli in vivo as a function of media salt concentration. The chaperone activity of Spy decreased when the ionic strength of the media was increased, strongly suggesting that electrostatic forces play a vital role in the action of Spy in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.