Abstract

Manipulations by contact of objects between 1 μ m and 1 mm are often disturbed by adhesion between the manipulated object and the gripper. Electrostatic forces are among the phenomena responsible for this adhesive effect. Analytical models have been developed in the literature to predict the electrostatic forces. Most models are developed within the framework of scanning probe microscopy, i.e. for a contact between a conducting tip and a metallic surface. Models are reviewed in this work and compared with our own simulations using finite elements modeling. The results show a good correlation. The main advantage of our simulations lies in the fact that they can integrate roughness parameters. For this purpose, a fractal representation of the surface topography was chosen through the use of the Weierstrass-Mandelbrot function. Comparisons with experimental benchmarks from the literature show very good correlation between experimental results and simulations. It demonstrates the importance of surface topography on electrostatic forces at very close separation distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.