Abstract

We have developed highly sensitive electrometers and electrostatic fieldmeters (EFMs) that make use of micromechanical variable capacitors. Modulation of the input capacitance, a technique used in macroscale instruments such as the vibrating-reed electrometer and the field-mill electrostatic voltmeter (ESV), moves the detection bandwidth away from the 1/f-noise-limited regime, thus improving the signal-to-noise ratio (SNR). The variable capacitors are implemented by electrostatically driven resonators with differential actuation and sensing to reduce drive-signal feedthrough. The resonators in the electrometer utilize a balanced comb structure to implement harmonic sensing. Two fabrication methods were employed - a hybrid technology utilizing fluidically self-assembled JFETs and SOI microstructures, and an integrated process from Analog Devices combining 0.8-μm CMOS and 6-μm-thick polysilicon microstructures. All devices operate in ambient air at room temperature. Measured data from one electrometer with an input capacitance of 0.7 pF indicates a charge resolution of 4.5 aC rms (28 electrons) in a 0.3 Hz bandwidth. The resolution of this electrometer is unequaled by any known ambient-air-operated instrument over a wide range of source capacitances. The EFM has a resolution of 630 V/m, the best reported figure for a MEMS device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.