Abstract
The concept of negatively charged electrostatic blocking barrier is demonstrated using benzotriazole (btzH) as ancillary ligands in a new ruthenium-dicarboxybipyridine photosensitizer, [Ru(dcbpyH)2(btzH)2], which was deprotonated in a stepwise manner generating the (Bu4N)2[Ru(dcbpy)2(btzH)2], (Bu4N)3[Ru(dcbpy)2(btzH)(btz)] and (Bu4N)4[Ru(dcbpy)2(btz)2] acid-base conjugates. All compounds were isolated as solids and used for the preparation of DSSCs with structurally similar TiO2/dye interface but distinct electric charge properties. The results revealed that the negative charges at the TiO2 surface, generated by deprotonation of the dcbpyH ligands, are less effective than those generated by deprotonation of the ancillary ligands located much farther from the surface. This peripheral electrostatic field probably is more effective in inhibiting the approach of the negatively charged hole transporter I3−, and consequently the electron recombination, thus enhancing the overall cell performance. This hypothesis was confirmed by measuring the interfacial resistance and capacitance of running cells, and simulating the respective impedance spectroscopy data using the transmission line model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.