Abstract
Polyvinylidene fluoride (PVDF) blended with varying concentrations of titanium nanotubes (TNT) was electrospun to result in a nanocomposite filter media. Sandwich structures were obtained by depositing the electrospun fibers between polypropylene (PP) nonwoven sheets. The synthesized tubular TNT was confirmed for its morphology through a transmission electron microscope (TEM). The prepared filter media was analyzed through a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The effectiveness of the filter media was evaluated through the zone of inhibition and antibacterial activity against E. coli and S. aureus. The Box-Behnken design is experimented with three-level variables, namely areal density of substrate (GSM), electrospinning time (hours), and concentration of TNT (wt%) for investigating the bacterial filtration efficiency through an Andersen sampler. Among other statistical tests (STATs), PVDF + 15 wt% TNT has a bacterial filtration efficiency of 99.88% providing greater potentials upon application for clean air management. It can be noted that the future application of this formulation could be efficient filtration of other microbes and could be used in facemasks to industrial-scale air filters. Graphical abstractSupplementary InformationThe online version contains supplementary material available at 10.1007/s11356-021-13202-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.