Abstract

AbstractNanofiber‐coated composite membranes were prepared by electrospinning polyvinylidene fluoride‐co‐chlorotrifluoroethylene (PVDF‐co‐CTFE) and PVDF‐co‐CTFE/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐co‐HFP) onto six different Celgard® microporous battery separator membranes. Application of a PVDF‐based copolymer nanofiber coating onto the surface of the battery separator membrane provides a method for improving the electrolyte absorption of the separator and the separator‐electrode adhesion. Peel tests showed that both PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber coatings have comparable adhesion to the membrane substrates. Electrolyte uptake capacity was investigated by soaking the nanofiber‐coated membranes in a liquid electrolyte solution. PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber‐coated membranes exhibited higher electrolyte uptake capacities than uncoated membranes. It was also found that PVDF‐co‐CTFE nanofiber‐coated membranes have higher electrolyte uptakes than PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber‐coated membranes due to the smaller diameters of PVDF‐co‐CTFE nanofibers and higher polarity of PVDF‐co‐CTFE. The separator–electrode adhesion properties were also investigated. Results showed PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber coatings improved the adhesion of all six membrane substrates to the electrode. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.