Abstract

ABSTRACTThe electrospun biocompatible poly (ε-caprolactonediol)-based polyurethane (PCL-Diol-b-PU) core/shell nanofibrous scaffolds were prepared via the coaxial electrospinning process. Temozolomide (TMZ) as an anticancer drug was loaded into the core of fibers to control the release of TMZ for the treatment of glioblastoma. The properties of nanofibers were characterized using XRD, FTIR, SEM, and TEM analysis. The sustained delivery of TMZ without initial burst release was achieved from all prepared core–shell nanofibrous samples over 30 days. The cytotoxicity results revealed that the TMZ-loaded PCL-Diol-b-PU core–shell nanofibers could be used as a drug delivery implant to deliver TMZ against glioblastoma tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.