Abstract

Non-rare-earth, red-emitting CaAl12O19:Mn4+ nanofiber phosphors have been successfully prepared by an electrospinning technique followed by an annealing process. The as-prepared precursor fibers have smooth surfaces with an average diameter of 5µm. After annealing at high temperature, the diameter of the fibers gradually reduces due to the decomposition of the organic polymers. The photoluminescence and crystalline properties of the fibers were investigated as a function of Mn4+ concentration and the annealing temperature. Under ultraviolet and blue light excitation, CaAl12O19:Mn4+ exhibits a characteristic red emission at 655nm with three satellite peaks due to the 2E→4A2 transition of Mn4+. The highest PL intensity is achieved at a 0.5% Mn4+ concentration and a firing temperature of 1400°C. In comparison to CaAl12O19:Mn4+ prepared by a usual solid-state reaction, the luminescence of the as-prepared nanofiber phosphors in the present work has been strongly enhanced by optimizing the morphology and improving the crystallinity and phase purity. The absorption band in the blue region and a bright emission in the red region make the CaAl12O19:Mn4+ nanofiber phosphor a candidate for achieving high color rendering in YAG:Ce-based WLEDs. A warm WLED with a high CRI of 88.5 at a CCT of 4553K has been successfully achieved by coating YAG:Ce with CaAl12O19:Mn4+ nanofiber phosphors on blue InGaN chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.