Abstract

BackgroundBioactive compounds have gained increasing attention for their health benefits. However, the instability of bioactive compounds during food processing and storage, and low bioavailability or chemical instability when exposed to upper gastrointestinal tract conditions significantly compromised the envisioned benefits, thus limiting their applications. Electrospinning has been recognized as a promising method to encapsulate bioactive compounds since it does not involve any severe conditions of temperature, pressure, or harsh chemicals. Therefore, the nanofibers produced by electrospinning have attracted particular attention in food industry due to the potential as vehicle for the encapsulation and controlled delivery or release of bioactive compounds. Scope and approachElectrospinning is a novel delivery approach for bioactive compounds, it opens a new horizon in food technology with the possibility of commercialization in the near future. This paper presents a brief summary of electrospinning, and its application in encapsulation different types of bioactive compounds by biopolymer matrixes are also highlighted. Further, the existing limitations and scope for future research are discussed. Key findingsRecently, considerable studies have been carried out in encapsulation of bioactive compounds using electrospinning. The obtained nanofilm could enhance stability, encapsulation efficiency and oral bioavailability of bioactive compounds, as well as achieve targeted delivery and controlled release, thus facilitating the development of functional foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.