Abstract

The offshore and coastal infrastructure needs additional protection from wear, corrosion, and tribocorrosion. Herein, electrospark deposition (ESD) was employed to deposit composite TaC-(Fe,Mo,Ni) and (Ta,Zr)C-(Fe,Mo,Ni) coatings with a metallic matrix (similar in elemental composition to that of stainless steel) reinforced with carbide nanoparticles. The coatings were produced using TaC–Mo–Ni and TaC–ZrC–Mo–Ni electrodes under different energy regimes by varying frequency, voltage, and pulse duration to obtain different carbide contents. The obtained coatings have a bilayer composite structure: core-shell TaC–ZrC crystallites embedded in an Fe-based metal matrix with a (Ta,Zr)C network (zone 1) and approximately 5 nm Fe-based nanocrystallites surrounded by amorphous interlayers (zone 2). The tribological properties of TaC-(Fe,Mo,Ni) and (Ta,Zr)C-(Fe,Mo,Ni) coatings were superior to those of uncoated AISI 304 stainless steel, both in the 3.5% NaCl solution and in 3.5% NaCl + SiC suspension. The electrochemical characteristics of the best coatings were comparable to those of the stainless steel. Tribocorrosion tests indicated that when load is applied, the open-circuit potential values of steel reduce more significantly than those of the coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.