Abstract

We report on development and experimental characterization of a novel cell manipulation device-the electrosonic ejector microarray-which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical "active" microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 mum diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.