Abstract

In suspensions of polarizable particles the addition of polar molecules can dramatically increase the yield stress under an applied electric field, leading to a giant electrorheological (GER) effect. We report experiments on dense suspensions of strontium titanyl oxalate in silicon oil, where we find a yield stress of up to 200kPa at 5kV/mm. The magnitude of this yield stress directly correlates with the water content in the particles. In the dynamic response we observe behavior not previously reported for GER fluids and similar to sheared granular materials, including a direct proportionality between shear and normal stresses and the creation of a shear band a few particles in width. An important consequence is that the dynamic response can be varied dramatically by changing the confinement of the suspension or by imposing a normal stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.