Abstract

Electrophysiological measurements on three clonally derived bone cell populations showed a positive correlation between longer-term hyperpolarizing membrane potential responses to parathyroid hormone (PTH) and an intracellular cAMP response to PTH. One clone (RCJ 1.20) had no sustained electrophysiological response and no cAMP response to PTH. Another clone (ROS 17/2.8) had both a sustained hyperpolarizing response and a cAMP response to PTH. The third clone (RCB 2.2) initially had both an electrophysiological response and a cAMP response to PTH, but both responses were lost after prolonged growth in culture. Application of dibutyryl cAMP to RCJ 1.20 and ROS 17/2.8 cells produced both transient and sustained hyperpolarizing responses. Application of isobutylmethylxanthine produced a sustained hyperpolarization. These results suggest that the hyperpolarizing response to PTH is related to a cAMP-mediated increase in Ca2+ conductance, which leads to an increase in Ca2+-activated K+ conductance. The pronounced membrane potential spikes and fluctuations that occur in some of the clonal lines were shown to be unrelated to the hyperpolarizing response to PTH. This was demonstrated by the lack of correlation between the occurrence of the spikes or fluctuations and the occurrence of the hyperpolarizing response to PTH in the various cell lines, by the lack of effect of PTH on the spikes and fluctuations, and by the lack of effect on the hyperpolarizing response to PTH of verapamil and quinine, both of which significantly reduce the spikes and fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.