Abstract

A comprehensive mathematical model is presented to study the peristaltic flow of Bingham viscoplastic micropolar fluid flow inside a microlength channel with electro-osmotic effects. The electro-osmotic effects are produced due to an axially applied electric field. The circulation of this electric potential is calculated by utilizing Poisson Boltzmann equation. The dimensionless form of mathematical equations is obtained by using lubrication theory and Debye-Huckel approximation. We have obtained analytical solutions for the final dimensionless governing equations. Finally, the graphical results are added to further discuss the physical aspects of the problem. Electro-osmotic is mainly helping to control the flow and axial velocity decreases with an increase in the electric field but micro-angular velocity increases with an increase in electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.