Abstract
(13)C NMR chemical shifts and nu(C[double bond]O) frequencies have been measured for several series of phenyl- or acyl-substituted phenyl acetates and for acyl-substituted methyl acetates to investigate the substituent-induced changes in the electrophilic character of the carbonyl carbon. Charge density, bond order, and energy calculations have also been performed. The spectroscopic and charge density results indicate that opposite to the conventional thinking, electron-withdrawing substituents do not increase the electrophilicity of the carbonyl carbon but instead decrease it. On the other hand, reaction energies of the isodesmic reactions designed show that electron-withdrawing substituents destabilize the carbonyl derivatives investigated. So, a significant ground-state destabilization of carboxylic acid esters, and carbonyl compounds in general, due to the decreased resonance stabilization, is proposed as a novel concept to explain both the increase in their reactivity and the changes in the chemical shifts and carbonyl frequencies induced by electron-withdrawing substituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.