Abstract

Controlling the direction and magnitude of both heat and electronic currents using rectifiers has significant implications for the advancement of molecular circuit design. In order to facilitate the implementation of new transport phenomena in such molecular structures, we examine thermal and thermoelectric rectification effects that are induced by an electron transfer process that occurs across a temperature gradient between molecules. Historically, the only known heat conduction mechanism able to generate thermal rectification in purely molecular environments is phononic heat transport. Here, we show that electron transfer between molecular sites with different local temperatures can also generate a thermal rectification effect and that electron hopping through molecular bridges connecting metal leads at different temperatures gives rise to asymmetric Seebeck effects, that is, thermoelectric rectification, in molecular junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.