Abstract

Single-crystalline In2O3 nanowires were synthesized and then utilized to construct field-effect transistors consisting of individual nanowires. These nanowire transistors exhibited nice n-type semiconductor characteristics with well-defined linear and saturation regimes, and on/off ratios as high as 104 were observed at room temperature. The temperature dependence of the conductance revealed thermal emission as the dominating transport mechanism. Oxygen molecules adsorbed on the nanowire surface were found to have profound effects, as manifested by a substantial improvement of the device performance in high vacuum. Our work paved the way for In2O3 nanowires to be used as nanoelectronic building blocks and nanosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.