Abstract

In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity, we calculate the electronic structures of the phosphorus-doped diamond with different phosphorus concentrations and the density of states in the phosphorus—doped diamond films with a vacant lattice site by the first principle method. The calculation results show the phosphorus atom only affects the bonds of a few atoms in its vicinity, and the conductivity increases as the doped concentration increases. Also in the diamond lattice with a total number of 64 atoms and introducing a vacancy into the non-nearest neighbor lattice site of a phosphorus atom, we have found that both the injuries of the phosphorus-doped diamond films and the N-type electron conductivity of diamond films could be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.