Abstract

The electronic structure and the magnetism of the novel ferromagnetic semiconductor (Ga,Fe)Sb, whose Curie temperature $T_{\rm C}$ can exceed room temperature, were investigated by means of x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and resonance photoemission spectroscopy (RPES). The line-shape analyses of the XAS and XMCD spectra suggest that the ferromagnetism is of intrinsic origin. The orbital magnetic moments deduced using XMCD sum rules were found to be large, indicating that there is a considerable amount of 3$d^{6}$ contribution to the ground state of Fe. From RPES, we observed a strong dispersive Auger peak and non-dispersive resonantly enhanced peaks in the valence-band spectra. The latter is a fingerprint of the correlated nature of Fe 3$d$ electrons, whereas the former indicates their itinerant nature. It was also found that the Fe 3$d$ states have finite contribution to the DOS at the Fermi energy. These states presumably consisting of majority-spin $p$-$d$ hybridized states or minority-spin $e$ states would be responsible for the ferromagnetic order in this material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.