Abstract

Individual substitutional defects in diamond have been theoretically investigated using spin-polarized, hybrid density functional theory method. The revised Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06) was applied for the total energy calculation. We analyzed the equilibrium geometry, formation energy as a function of charge state and defect charge transition levels, in order to predict the relative stability and doping nature of each defect. Calculations revealed that the crystal radius cannot be solely used to anticipate trend in the volume relaxation and subsequently defect formation energy. A thorough analysis of formation energy vs Fermi level diagrams indicate that none of the investigated elements can individually generate a shallow acceptor or donor level, competitive with substitutional B and P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.