Abstract

Electronic structures of superconducting Re24Nb5 and Re24Ti5 have been calculated employing the full-potential local-orbital method within the density functional theory. The investigations were focused on the influence of the antisymmetric spin–orbit coupling on band structures and Fermi surfaces of these non-centrosymmetric systems. The predicted here density of states at the Fermi level for Re24Ti5 is abnormally low with respect to that deduced from previous heat capacity measurements. This discrepancy suggests an intermediate coupled superconducting state in Re24Ti5. The differences between electronic properties of both compounds could explain more robust superconductivity in the Nb-based material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.