Abstract
The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However, the perturbation by the metal decreases rapidly with the addition of further graphene sheets, and already an epitaxial graphene bilayer on Ru recovers the characteristic Dirac cones of isolated monolayer graphene. A graphene trilayer on Ru behaves like free-standing bilayer graphene. Density-functional theory based calculations show that this decoupling is due to the efficient passivation of metal d-states by the interfacial graphene layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.