Abstract
We investigate, using first-principles calculations, the electronic structure of substitutional and vacancy defects in a boron nitride monolayer. We found that the incorporation of a substitutional carbon atom induces appreciable modification on the electronic properties, when compared to a non-defective boron nitride sheet. The incorporation of substitutional carbon impurity also induces a significant reduction of the work function. In addition, we found that defects introduce electronic states in the energy-gap region, with strong impact on the optical properties of the material. The calculation results indicate that spin polarization is obtained when substitutional impurities or vacancy defects are introduced in the structure
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.