Abstract

The electronic structure of CO3 is characterized by equation-of-motion and coupled-cluster methods. C(2v) and D(3h) isomers are considered. Vertical excitation energies, transition dipoles, and the molecular orbital character of the excited states are presented for singlet and triplet manifolds. Ground-state equilibrium structures and frequencies are strongly affected by vibronic interactions with low-lying excited states. At D(3h) geometries, the vibronic interactions are enhanced by the Jahn-Teller character of the excited states. The curvature of the potential energy surface and the existence of the D(3h) minimum are very sensitive to the correlation treatment and the basis set. The correlation effects are stronger at D(3h), in agreement with a smaller HOMO-LUMO gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.