Abstract

Topotactic phase transition in SrCoOx (x = 2.5–3, denoted as SCO) has become a focal point for the study of this unique functional oxide system, sparked by the large alteration in the physical and chemical properties from brownmillerite (BM) to perovskite (P) phases. Recently, we showed that applying electrochemical bias could be a convenient way to control the oxygen stoichiometry in SCO and trigger its topotactic phase transition. In this paper, we utilized in situ ambient pressure X-ray spectroscopic tools to reveal the electronic structure and oxygen nonstoichiometry evolution during the BM → P phase transition of SCO. During the BM → P transition via intercalation of oxygen anions into the structure, we found a lowering of the Fermi level due to creation of Co 3d–O 2p hybridized unoccupied states. X-ray absorption spectra showed that the formed unoccupied states have largely O 2p characteristics. Finally, we utilized the time-dependent relaxation of the X-ray absorption intensity as a new approach to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.